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Abstract

Background: Chronic low-grade inflammation reflects a subclinical immune response implicated in the
pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with
chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.
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Results: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive
protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population
(n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at
218 CpG sites to be associated with CRP (P < 1.15 × 10–7) in the discovery panel of European ancestry and
replicated (P < 2.29 × 10–4) 58 CpG sites (45 unique loci) among African Americans. To further characterize
the molecular and clinical relevance of the findings, we examined the association with gene expression,
genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated
with whole blood gene expression in cis (P < 8.47 × 10–5), ten (17%) CpG sites were associated with a nearby
genetic variant (P < 2.50 × 10–3), and 51 (88%) were also associated with at least one related cardiometabolic
entity (P < 9.58 × 10–5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual
variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.

Conclusion: We have completed an EWAS of chronic low-grade inflammation and identified many novel
genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic
interventions for inflammation.

Keywords: Inflammation, DNA methylation, Epigenome-wide association study, C-reactive protein, Body mass
index, Diabetes, Coronary heart disease

Background
Chronic low-grade inflammation is a complex im-
mune response that plays an important role in the
pathogenesis of multiple chronic diseases, including
diabetes and cardiovascular disease [1, 2]. C-reactive
protein (CRP) is a sensitive marker of chronic low-
grade inflammation in community-dwelling adults [3]
and is associated in population-based studies with an
increased risk of incident coronary heart disease
(CHD), stroke, and non-vascular mortality [4]. Several
pathways have been identified for chronic low-grade
inflammation [1, 5] and genetic studies have found
candidate loci through discovery of genetic sequence
determinants of circulating CRP levels [6]. However,
most of the molecular mechanisms underlying inter-
individual variation in inflammation in the general
population and the inter-relation with complex dis-
eases remain to be elucidated.
Epigenetic modifications comprise biochemical alter-

ations to the genome that leave the underlying nucleic
acid sequence unchanged but can affect phenotypic ex-
pression. DNA methylation is a pivotal and stable epi-
genetic mechanism whereby a methyl group is attached
to the DNA sequence, most often a cytosine nucleotide
that neighbors a guanine nucleotide. DNA methylation
is affected by both genetic and environmental factors
and regulates gene expression and chromosome stability
[7]. Investigating DNA methylation in chronic low-grade
inflammation may point to functional epigenetic changes
that occur in the context of inflammation.
We performed the first meta-analysis of epigenome-

wide association studies (EWAS) of methylation of DNA
on chronic low-grade inflammation using CRP as a
sensitive inflammatory biomarker (Fig. 1). We first

conducted a discovery meta-analysis, comprising 8863
participants of European ancestry. Since race or ethnicity
may affect epigenetic associations [8], we conducted
trans-ethnic replication in 4111 individuals of African-
American ancestry. We further investigated the associ-
ation between replicated DNA methylation sites and
both cis- gene expression and genetic variants. Finally,
differentially methylated CpG sites were examined for
association with cardiometabolic phenotypes to study
potential epigenetic links between inflammation and
cardiometabolic diseases.

Results
Clinical characteristics
The nine participating discovery (n = 8863) and four rep-
lication cohorts (n = 4111) and the clinical characteristics
of the participants are presented in Table 1 (further
details, Additional file 1: Table S1). The mean age in the
participating studies ranged from 41 years in the Grady
Trauma Project (GTP) cohort to 87 years in Lothian
Birth Cohort (LBC) 1921. The majority (54%) of the
samples were from women. Some of the cohorts differed
based on selection criteria for entry into the study. The
Normative Aging Study (NAS) only included men, while
the Women’s Health Initiative (WHI) only included
women. Mean serum CRP levels (SD) ranged from 2.3
(3.7) mg/L in the Kooperative Gesundheitsforschung in
der Region Augsburg (KORA) study to 7.2 (8.4) mg/L in
the African-American CHD cases of WHI.

Discovery meta-analysis
We identified 218 CpG sites significantly associated (P <
1.15 × 10−7) with CRP in the meta-analysis of European
participants, adjusted for age, sex, white blood cell
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Table 1 Characteristics of the discovery (n = 8863) and replication (n = 4111) studies

Study n Country Age (years) Women (%) CRP (mg/L) BMI (kg/m2)

Discovery (European)

CHS 187 USA 76 (5) 56 6.6 (11.0) 31 (6)

EPIC-Norfolk 1287 UK 60 (9) 54 3.3 (5.4) 27 (4)

FHS 2427 USA 66 (9) 52 3.1 (6.7) 28 (5)

InCHIANTI 498 Italy 63 (16) 55 3.2 (3.5) 27 (4)

KORA 1700 Germany 61 (9) 51 2.3 (3.7) 28 (5)

LBC 1921 169 UK 87 (0) 54 3.7 (8.4) 26 (4)

LBC 1936 296 UK 70 (1) 50 5.3 (6.8) 28 (4)

NAS 648 USA 73 (7) 0 3.3 (6.1) 28 (4)

Rotterdam 702 Netherlands 60 (8) 54 2.7 (4.7) 28 (5)

WHI controls 471 USA 68 (6) 100 3.8 (5.5) 28 (6)

WHI cases 478 USA 69 (6) 100 4.9 (6.4) 29 (6)

Replication (African American)

ARIC 2264 USA 56 (6) 64 5.9 (7.8) 30 (6)

CHS 193 USA 73 (5) 65 5.2 (5.6) 29 (5)

GENOA 939 USA 66 (8) 71 6.7 (12.3) 31 (6)

GTP 112 USA 41 (13) 70 5.9 (8.1) 33 (8)

WHI controls 309 USA 62 (6) 100 6.1 (7.5) 31 (7)

WHI cases 294 USA 64 (7) 100 7.2 (8.4) 32 (6)

Characteristics are mean (SD), unless otherwise specified
ARIC Atherosclerosis Risk in Communities, BMI body mass index, CHS Cardiovascular Health Study, CRP C-reactive protein, EPIC-Norfolk European Prospective Inves-
tigation into Cancer and Nutrition Norfolk, FHS Framingham Heart Study, GENOA Genetic Epidemiology Network of Arteriopathy, InCHIANTI Invecchiare in Chianti,
KORA Kooperative Gesundheitsforschung in der Region Augsburg, LBC Lothian Birth Cohort, NAS Normative Aging Study, UK United Kingdom, USA United States
of America, WHI Women’s Health Initiative

Fig. 1 Illustration of overall study flow
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proportions, technical covariates, smoking, and body
mass index (BMI) (Manhattan and QQ-plot, Fig. 2,
Additional file 2: Table S2, and Additional file 3: Table
S3). Serum CRP was positively associated with 125 CpG
sites and negatively associated with 93. The top CpG site
was cg10636246 at 1q23.1 located within 1500 bp of the
transcription start site of Absent in melanoma 2 (AIM2)
(effect size = −0.0069, P = 2.53 × 10−27), an interferon-
gamma-induced protein involved in the innate immune
response by inducing caspase-1-activating inflamma-
some formation in macrophages.

Replication meta-analysis
Of the 218 CpG sites significantly associated with CRP in
our discovery meta-analysis, 58 replicated (P < 2.29 × 10−4)
in a trans-ethnic replication meta-analysis of 4111 individ-
uals of African-American ancestry (Table 2). The repli-
cated CpG sites annotated to 45 separate loci. The most
significant CpG site in the discovery panel (cg10636246;
AIM2) was also strongly related to serum CRP in individ-
uals of African-American ancestry (effect size = −0.0081,
P = 6.31 × 10−9). Effect estimates of the 58 replicated CpG
sites assessed in the European and African-American
panel were highly correlated (r = 0.97). Cochrane’s Q
statistics displayed homogeneity for > 95% of the 58 repli-
cated loci in both the European discovery panel and the
African-American replication panel (study specific effect
estimates, Additional file 4). In addition, we conducted a
meta-analysis combining the European and African-
American whole blood samples resulting in 258 significant
CpGs (Additional file 5).

Sensitivity analyses
Further adjustment of the replicated CpG sites for add-
itional potential confounders (waist circumference, total/
HDL-cholesterol ratio, prevalent diabetes, hypertension
treatment, lipid treatment, hormone replacement ther-
apy, and prevalent CHD) did not substantially change
the effect estimates and P values. Additional file 6:
Figure S3 depicts the correlation between the effect
estimates and –log10 P values in the primary model
compared to the multivariable adjusted model, respect-
ively. Furthermore, 18 CpGs were found to be associated
with serum CRP levels in CD4+ cells in the GOLDN study
(P < 0.05) (Additional file 7: Table S6).

Methylation and genetic scores
Additive weighted methylation and genetic scores were
constructed to calculate percentage of total CRP vari-
ance explained. A methylation score including eight in-
dependent CpGs (cg10636246, cg17501210, cg18608055,
cg03957124, cg04987734, cg04523589, cg17980786, and
cg02341197) explained 5.8% of the variance of CRP in
Atherosclerosis Risk in Communities (ARIC), 2.3% in

KORA, 5.0% in NAS, and 4.6% in RS. A genetic score
including 18 independent CRP single nucleotide poly-
morphisms (SNPs) explained 4.9% of the CRP variance
in RS and the methylation and genetic scores together
explained 9.0%. Notably, no significant interaction or
association was observed between the genetic and
methylation scores, suggesting that they independently
explain variance in CRP.

Association with cardiometabolic phenotypes
We examined the associations between the 58 replicated
CRP-related CpG sites and nine cardiometabolic traits
and diseases (BMI, lipids, glycemic phenotypes, preva-
lent CHD, and incident CHD). After Bonferroni correc-
tion for multiple testing based on 58 CpG sites and nine
phenotypes (P < 0.05/522 = 9.58 × 10−5), we observed
89 significant associations with 51 unique CpG sites
(Additional file 8: Table S7). There was major overlap
with BMI (46 CpGs). CpGs that were significantly
associated with higher BMI, fasting glucose, fasting
insulin, risk of diabetes, triglycerides, and risk of
CHD were also associated with higher CRP levels. For
HDL-cholesterol and total cholesterol, CpGs were
associated with lower CRP levels (Fig. 3).

Gene expression analyses
Of the 58 replicated CpG sites, nine (16%) were signifi-
cantly associated with expression of nine unique genes
in cis (P < 8.47 × 10−5) (Additional file 9: Table S8). Fur-
thermore, of those nine genes, the expression levels of
four genes were associated with serum CRP levels (P <
0.05). In these four cases, we could show corresponding
triangular relationships between DNA methylation, gene
expression, and serum CRP levels. For example, in-
creased methylation at cg10636246 was associated with
lower serum CRP levels and lower expression of AIM2
and lower expression of AIM2 was associated with lower
CRP levels (Fig. 4).

Genetic correlates of DNA methylation in cis
In the RS, we identified 20 cis-mQTL pairs (19
unique SNPs and 20 unique CpG sites) for the repli-
cated CpG sites, ten of these cis-mQTL pairs could
be replicated in the Framingham Heart Study (FHS)
(P < 2.5 × 10−3) (Additional file 10: Table S9). For
example, the strongest correlation was observed be-
tween rs12677618 and cg25392060 (located 4903 bp
away from each other; β = −0.011; P = 2.73 × 10−126).
None of the ten replicated cis-mQTL variants was sig-
nificantly associated with serum CRP levels after Bon-
ferroni correction for multiple testing (P > 0.005) in
the largest published genome-wide association study
(GWAS) to date of 66,185 individuals [6].
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GWAS catalog, pathway analysis, and tissue enrichment
The 58 CpG sites were annotated to 47 genes, which
are associated in GWAS with 18 phenotypes
(Additional file 11: Table S10). We found enrichment
in GWAS of epilepsy, renal cell carcinoma, and
lipoprotein-associated phospholipase A2 (Lp-PLA2)
activity and mass.
Pathway enrichment analyses were carried out in 47

unique genes that were annotated to the 58 replicated
CpG sites in the Ingenuity Pathway Analysis (IPA) data-
base. The top pathways included growth hormone sig-
naling, IL-9 signaling, atherosclerosis, and IL-6 signaling
(Additional file 12: Table S11).
Analysis of tissue specific DNase I hotspots yielded

enrichment predominantly in epithelium, blood vessels,
and various blood cells (especially CD14+ macrophages)
(Additional file 6: Table S4).

Discussion
This meta-analysis of EWAS of CRP, a sensitive marker
of chronic low-grade inflammation, identified and vali-
dated 58 CpG sites in or near 45 unique loci in leuko-
cytes of individuals of European and African descent.
The associations were robust to adjustment for potential
confounders and explained more than 6% of the
variation in circulating CRP concentrations. We demon-
strated that several inflammation-related CpG sites were
associated with expression of nearby genes and many
CpG sites showed pleiotropic associations with cardiomet-
abolic phenotypes as well as the clinical disease CHD.
DNA methylation may differ by race or ethnicity [8],

challenging replication across individuals of varying des-
cent in epigenetic studies. We were able to replicate up
to 27% of our findings with comparable effect estimates,
demonstrating that our results are generalizable across
Europeans and African Americans. The trans-ethnic

replication approach of our study strengthens the confi-
dence of true-positive findings and supports the notion
that despite differing baseline epigenetic profiles, differ-
ent ethnicities may have consistent epigenetic associa-
tions with respect to inflammation.
Increased DNA methylation at the top signal

cg10636246 near AIM2 was associated with lower ex-
pression of AIM2 and lower CRP levels. In agreement,
lower AIM2 expression was associated with lower serum
CRP levels. As an inflammasome receptor for double-
stranded DNA activating inflammatory cascades, AIM2
is implicated in host defense mechanisms against bacter-
ial and viral pathogens and thus is key in the human in-
nate immune response [9, 10]. The data suggest that
methylation near AIM2 plays a role in low-grade inflam-
mation in the general population. Nevertheless, the re-
sults from the current study do not infer causal
directionality.
Several of our hits were associated with future clinical

events. For example, three inflammation-related CpG
sites were also associated with incident CHD. Hypome-
thylation at cg18181703 (SOCS3), cg06126421 (TUBB),
and cg05575921 (AHRR) were associated with higher
CRP levels and increased risk of future CHD. The gene
product of SOCS3, suppressor of cytokine signaling 3,
plays a pivotal role in the innate immune system as a
regulator of cytokine signaling [11]. The role of SOCS3
in atherosclerosis has been established [12]. We ob-
served that lower DNA methylation was associated with
increased expression of SOCS3 and increased serum
CRP. Differential methylation at the AHRR loci has been
robustly demonstrated to be associated with cigarette
smoking [13]. The association of AHRR methylation with
CRP and incident CHD may highlight a connection
between CRP and cardiovascular disease that is shared be-
tween cigarette smoking and independent mechanisms.

Fig. 2 a Manhattan plot depicting the –log10(P values) of the associations between all CpG sites and CRP, adjusted for age, sex, BMI,
cell distributions, technical covariates, and smoking. The dotted lines indicate the Bonferroni threshold of 1.15 × 10−7 for significance.
The red dots indicate positive significant associations between methylation and CRP, the blue dots indicate negative significant associations. b QQ plot
showing observed vs. expected − log10(P values) for association at all CpG sites

Ligthart et al. Genome Biology  (2016) 17:255 Page 5 of 15



Table 2 DNA methylation sites associated with serum CRP levels

CpG sites Chr Position Effect size EA P value EA Effect size AA P value AA Gene

cg10636246 1 159046973 −0.0069 2.53 × 10−27 −0.0081 6.31 × 10−09 AIM2

cg17501210 6 166970252 −0.0065 2.06 × 10−26 −0.0076 9.45 × 10−05 RPS6KA2

cg02650017 17 47301614 −0.0021 4.87 × 10−25 −0.0011 7.71 × 10−06 PHOSPHO1

cg12992827 3 101901234 −0.0057 9.73 × 10−22 −0.0086 4.42 × 10−14 NFKBIZ

cg16936953 17 57915665 −0.0077 3.74 × 10−21 −0.0125 1.13 × 10−13 TMEM49

cg19821297 19 12890029 −0.0051 5.19 × 10−21 −0.0055 6.58 × 10−06 GCDH

cg07573872 19 1126342 −0.0052 1.24 × 10−20 −0.0068 2.98 × 10−09 SBNO2

cg26470501 19 45252955 −0.0045 2.85 × 10−20 −0.0051 4.08 × 10−07 BCL3

cg12054453 17 57915717 −0.0082 6.96 × 10−20 −0.0117 4.25 × 10−12 TMEM49

cg18608055 19 1130866 −0.0043 1.94 × 10−19 −0.0078 2.96 × 10−11 SBNO2

cg06192883 15 52554171 0.0045 2.29 × 10−19 0.0073 8.29 × 10−12 MYO5C

cg18181703 17 76354621 −0.0053 2.13 × 10−18 −0.0091 7.08 × 10−13 SOCS3

cg18942579 17 57915773 −0.0056 4.77 × 10−16 −0.0098 8.70 × 10−12 TMEM49

cg19769147 14 105860954 0.0029 1.51 × 10−15 0.0029 6.60 × 10−05 PACS2

cg20995564 2 145172035 −0.0051 2.04 × 10−15 −0.0089 2.69 × 10−10 ZEB2

cg02734358 4 90227074 −0.0048 3.09 × 10−15 −0.0051 5.51 × 10−05 GPRIN3

cg07094298 4 2748026 −0.0056 4.76 × 10−15 −0.0058 5.32 × 10−06 TNIP2

cg01059398 3 172235808 −0.0042 4.51 × 10−14 −0.0068 2.27 × 10−05 TNFSF10

cg06690548 4 139162808 −0.0048 1.21 × 10−13 −0.0029 1.52 × 10−07 SLC7A11

cg02003183 14 103415882 0.0047 3.59 × 10−13 0.0051 4.36 × 10−05 CDC42BPB

cg26804423 7 8201134 0.0027 3.87 × 10−13 0.0038 4.82 × 10−07 ICA1

cg13585930 10 72027357 −0.0037 1.42 × 10−12 −0.0046 7.95 × 10−05 NPFFR1

cg03957124 6 37016869 −0.0030 3.13 × 10−12 −0.0039 1.39 × 10−05 FGD2

cg12053291 12 125282342 0.0029 5.99 × 10−12 0.0038 9.80 × 10−05 SCARB1

cg02481950 16 21665002 0.0022 7.84 × 10−12 0.0034 2.92 × 10−06 METTL9

cg04987734 14 103415873 0.0041 8.40 × 10−12 0.0051 1.40 × 10−04 CDC42BPB

cg15551881 9 123688715 0.0039 4.62 × 10−11 0.0049 3.99 × 10−07 TRAF1

cg27023597 17 57918262 −0.0050 5.02 × 10−11 −0.0070 5.96 × 10−06 MIR21

cg05575921 5 373378 −0.0059 5.44 × 10−11 −0.0063 1.17 × 10−04 AHRR

cg27469606 19 1154485 −0.0020 5.62 × 10−11 −0.0023 1.96 × 10−06 SBNO2

cg01409343 17 57915740 −0.0037 3.56 × 10−10 −0.0081 6.12 × 10−10 TMEM49

cg21429551 7 30635762 −0.0069 4.42 × 10−10 −0.0080 1.68 × 10−05 GARS

cg23761815 10 73083123 0.0022 8.86 × 10−10 0.0029 6.85 × 10−05 SLC29A3

cg08548559 22 31686097 −0.0038 9.94 × 10−10 −0.0049 9.88 × 10−05 PIK3IP1

cg26610247 8 142297175 0.0029 1.07 × 10−09 0.0041 4.59 × 10−06 TSNARE1

cg27050612 17 46133198 −0.0019 1.30 × 10−09 −0.0029 8.23 × 10−05 NFE2L1

cg15721584 3 181326755 0.0055 1.71 × 10−09 0.0072 1.14 × 10−05 SOX2OT

cg06126421 6 30720080 −0.0052 1.80 × 10−09 −0.0059 1.53 × 10−04 TUBB

cg00851028 1 234905772 0.0023 1.95 × 10−09 0.0042 1.46 × 10−05 -

cg24174557 17 57903544 −0.0038 1.97 × 10−09 −0.0051 1.65 × 10−04 TMEM49

cg05316065 8 130799007 −0.0027 2.26 × 10−09 −0.0051 2.28 × 10−07 GSDMC

cg04523589 3 48265146 0.0022 2.49 × 10−09 0.0031 4.47 × 10−05 CAMP

cg17980786 3 32933637 0.0026 4.58 × 10−09 0.0055 1.47 × 10−09 TRIM71

cg25325512 6 37142220 −0.0031 5.31 × 10−09 −0.0052 4.94 × 10−05 PIM1
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Furthermore, we found two CpG sites that have recently
been identified in an EWAS of incident type 2 diabetes
[14]. We hypothesize that inflammation-related epigenetic
features may explain at least part of the observed associa-
tions between CRP, a sensitive marker of chronic low-
grade inflammation, and related clinical events including
CHD and diabetes.

Many replicated CpG sites demonstrated associations
with cardiometabolic phenotypes, emphasizing the sub-
stantial epigenetic overlap with those phenotypes. Taken
together, these pleiotropic epigenetic associations across
various phenotypes may provide novel insights into shared
epigenetic mechanisms and provide opportunities to link
chronic low-grade inflammation and cardiometabolic

Fig. 3 Manhattan plot depicting the –log10(P values) and effect direction (respectively to CRP) of the associations between the 58
replicated CpG sites and each cardiometabolic phenotype, adjusted for age, sex, BMI, cell distributions, technical covariates, and
smoking. The dotted lines indicate the Bonferroni threshold of 9.58 × 10−5 for significance

Table 2 DNA methylation sites associated with serum CRP levels (Continued)

cg00812761 4 53799391 0.0025 5.60 × 10−09 0.0036 1.36 × 10−04 SCFD2

cg27637521 17 76355202 −0.0016 5.69 × 10−09 −0.0017 3.69 × 10−05 SOCS3

cg26846781 17 61620942 0.0018 5.99 × 10−09 0.0033 3.03 × 10−05 KCNH6

cg00159243 12 109023799 −0.0026 8.22 × 10−09 −0.0036 1.38 × 10−04 SELPLG

cg15310871 8 20077936 0.0022 8.63 × 10−09 0.0027 2.96 × 10−05 ATP6V1B2

cg15020801 17 46022809 0.0024 1.67 × 10−08 0.0033 9.47 × 10−05 PNPO

cg03128029 2 203143288 −0.0027 1.90 × 10−08 −0.0036 2.03 × 10−04 NOP58

cg22749855 17 76353952 −0.0024 3.22 × 10−08 −0.0035 5.15 × 10−05 SOCS3

cg02341197 21 34185927 0.0030 3.92 × 10−08 0.0045 2.54 × 10−05 C21orf62

cg12269535 6 43142014 −0.0028 4.39 × 10−08 −0.0046 1.57 × 10−04 SRF

cg25392060 8 142297121 0.0025 5.60 × 10−08 0.0036 2.15 × 10−04 TSNARE1

cg27184903 15 29285727 0.0024 5.84 × 10−08 0.0052 4.91 × 10−07 APBA2

cg18663307 21 46341389 0.0029 6.98 × 10−08 0.0048 1.04 × 10−04 ITGB2

cg09182678 22 50328711 −0.0016 9.02 × 10−08 −0.0019 1.26 × 10−04 DENND6B

Effect sizes represent the changes in normalized DNA methylation Beta-values per 1-unit increase in natural log-transformed CRP (mg/L)
Chr and Position are in GRCh37/hg19
AA African American, EA European Ancestry
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phenotypes. Our findings may help to focus on genomic
regulation of pertinent loci that may be attractive targets
for perturbation or therapeutic intervention.
CRP is affected by both genetic and environmental fac-

tors [15]. Although we may have slightly overestimated
the variance explained since the testing cohorts partici-
pated in the discovery and replication meta-analysis, the
CRP methylation score augmented the explained vari-
ance beyond that accounted for by the CRP genetic
score. This suggests that the methylation score harbors
information that may be independent from the genetic
factors underlying CRP. In agreement with a previous
report on the added value of a methylation score in
explaining variance in BMI, we further add that methyla-
tion may explain further variation of complex traits that
have substantial environmental components [16].
In the present study, we were able to present stringent

triangular relationships between DNA methylation, gene
expression, and serum CRP levels at four loci. However,
firm conclusions regarding causal directionality are chal-
lenging in epigenetic studies. Although ten (17%) of the
replicated methylation sites had cis-mQTLs, we were
not able to detect a significant association between these
mQTLs and CRP levels in the largest published CRP
GWAS, which may be due to the limited power, or the
findings represent methylation changes downstream of
CRP. However, our findings were biologically plausible
and consistent with previous observations. For example,
GWAS enrichment analysis suggested enrichment in
genes identified for renal cell carcinoma. CRP is com-
monly elevated in renal cell carcinoma patients [17].
Furthermore, pathway analyses identified regulatory
mechanisms related to inflammatory processes such as
STAT3 and IL-6 signaling pathway, the pro-
inflammatory upstream regulator of serum CRP levels

[18]. Taken together, these results suggest that DNA
methylation plays a role in establishing or maintaining
CRP levels in the general population.
The major strengths of the present study are its large

sample size and multi-ethnic nature, allowing a valid in-
terpretation of results for both European and African-
American populations. Furthermore, careful and com-
prehensive adjusting models reduced the chance of con-
founding. In addition, DNA methylation was quantified
in whole blood, which is primarily composed of leuko-
cytes, a key component of the human immune system
and therefore highly relevant to systemic inflammation.
The combination of epigenomics with genomics and
transcriptomics data as well as enrichment analyses
allowed the exploration of functional properties of our
findings.
The study has limitations. The 450 K array captures

approximately 2–4% of the total human DNA methyla-
tion, mainly in genic regions, thus limits the discovery of
potentially important CpG sites that are not measured
on the array. Furthermore, although we adjusted the
analyses for measured or estimated cell type proportions,
we cannot completely rule out the presence of residual
confounding by white blood cell distributions. Residual
confounding from differences in unmeasured cell count
heterogeneity introduced by correlation between CRP
and unknown cell subtypes may bias our results. Also,
the annotation of CpGs and SNPs to genes is challen-
ging in genomic studies. We annotated primarily based
on distances, which may have incorrectly annotated
genes. Further, we replicated our findings from the Euro-
pean discovery in African Americans. The differences in
ethnicities and the African-American sample size may
have limited replication of the findings. Our study was
limited to blood samples and while this has been

Fig. 4 Illustration of the methylation-CRP, methylation-expression, and expression-CRP association for cg10636246 (AIM2)
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demonstrated to be a good surrogate tissue [19], we
would not be able to infer tissue specific methylation
changes. Specifically, as CRP is synthesized in the liver,
our current study design would not allow us to detect
hepatic methylation changes. We did not observe associ-
ations with nearby gene expression for all CpGs we
identified. However, the limited sample size for
methylation-expression analyses, failure for expression
probes to pass quality control, tissue-specificity, and
long-distance effects may explain this observation.
Furthermore, DNA methylation may also affect chromo-
some stability and alternative splicing, two functional
consequences of DNA methylation which we have not
investigated in the present study. Finally, we cannot
exclude residual confounding and cannot determine
causal directionality.

Conclusions
We performed the first meta-analysis of EWAS of CRP,
a sensitive marker of low-grade inflammation. We iden-
tified 58 DNA methylation sites that are significantly
associated with CRP levels in individuals of both Euro-
pean and African-American ancestry. Since inflamma-
tion is implicated in the development of multiple
complex diseases, the discoveries from the current study
may contribute to the identification of novel therapies
and interventions for treatment of inflammation and its
clinical consequences.

Methods
Discovery and replication study population
Our study was conducted within the framework of the
Epigenetics working group of the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE)
consortium [20]. The discovery study population com-
prised 8863 individuals from the following 11 cohort
studies (listed in alphabetical order): the Cardiovascular
Health Study (CHS), the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC) Norfolk study,
the FHS, the Invecchiare in Chianti study (InCHIANTI),
the KORA study, the LBCs 1921 and 1936 (LBC1921/
1936), the NAS, the Rotterdam Study (RS), and the
WHI. All individuals in the discovery cohorts were of
European descent. The trans-ethnic replication popula-
tion consisted of 4111 African-American individuals
from the ARIC study, the CHS, the Genetic Epidemi-
ology Network of Arteriopathy (GENOA) study, the
GTP, and the WHI. The studies are described in detail
in Additional file 13: Supplemental methods. Individuals
with autoimmune diseases (rheumatoid arthritis, lupus
erythematosus, Crohn’s disease, type 1 diabetes) and
individuals receiving immune-modulating agents were
excluded from all analyses, when disease status and
medication data were available. Individuals without such

data were assumed to be disease-free and non-users. All
participants gave written informed consent and proto-
cols were approved by local institutional review boards
and ethic committees.

C-reactive protein measurements
Serum CRP was measured in mg/L using high-sensitivity
assays in all studies except the LBCs, in which CRP was
measured with the use of a normal sensitivity assay. CRP
was measured in blood samples drawn at the same time
and center visit as blood was drawn for DNA methyla-
tion quantification. CRP values were natural log-
transformed (lnCRP). Study-specific methods on the
quantification of CRP are described in Additional file 13:
Supplemental methods. Distributions of the natural log-
transformed serum CRP levels per study are depicted in
Additional file 6: Figure S1.

DNA methylation quantification
For the quantification of the DNA methylation, DNA
was extracted from whole blood in all studies. All studies
used the Illumina Infinium Human Methylation450K
BeadChip (Illumina Inc, San Diego, CA, USA) for DNA
methylation measurement except GENOA, which used
the Illumina Infinium HumanMethylation27K BeadChip
(Illumina Inc, San Diego, CA, USA). The 450 K Bead-
chip assays methylation of > 480,000 CpGs and is
enriched for gene regions and covers 99% of all genes.
DNA methylation data pre-processing was conducted
independently in different studies and β values were nor-
malized using study-specific methods. We used methyla-
tion β values to represent the proportion of the total
signal intensity, which is in the range of 0–1. Further
study-specific methods and filtering criteria can be
found in Additional file 13: Supplemental methods and
Additional file 2: Table S2. A CpG site was deemed poly-
morphic when a SNP in the 1000 Genomes Project
(Phase 1) with a minor allele frequency ≥0.01 resided at
the position of the cytosine or guanine on either strand,
or within 10 bp from the CpG within the probe binding
site [8]. Polymorphic CpG sites were excluded from all
analyses. Also, cross-reactive probes were excluded from
all analyses [21]. In total, 434,253 probes were available
for analysis.

Epigenome-wide association study
The EWAS was performed at each center separately.
Individuals with CRP values > 4 standard deviations (SD)
from the respective cohort mean lnCRP were excluded
from all analyses. In the primary model, we used linear
mixed effect regression models to study the methylation
β-values, specified as the dependent variable, as a func-
tion of lnCRP adjusting for age, sex, white blood cell
proportions, technical covariates (array number and
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position on array), smoking (current, former and never),
and BMI. Technical covariates were modeled as random
effects. Measured or estimated (Houseman method im-
plemented in the minfi package in R [22, 23]) leukocyte
proportions were included to account for cell type
admixture (Additional file 2: Table S2). When applicable,
models were additionally adjusted for study specific
covariates such as study site (fixed effect) and family
structure (random effect). Regression models and adjust-
ments were comparable in the discovery and replication
analyses. The effect size represents the change in DNA
methylation per 1-unit increase in lnCRP.

Meta-analysis
Fixed effects meta-analyses were conducted using the
inverse-variance weighted method implemented in
METAL, corrected for double lambda control (individual
studies and meta-analysis) [24]. In the discovery phase, a
Bonferroni correction was applied to correct for multiple
testing with a significance threshold of 0.05/434,253 =
1.15 × 10−7. We then examined the significant CpG sites
for trans-ethnic replication in 4111 individuals of
African-American ancestry using a Bonferroni-corrected
significance threshold for the number of CpG sites taken
forward for replication. Between-study heterogeneity
was examined with Cochran’s Q statistic with a
Bonferroni-corrected significance threshold for the num-
ber of replicated CpG sites. We performed a power
calculation for the replication analysis using the GPower
3.1 tool (Additional file 6: Figure S2) [25]. Additionally,
the European and African-American samples were com-
bined in one meta-analysis.

Sensitivity analyses
In a subset of the discovery cohorts that had further
confounders available (CHS, FHS, InCHIANTI, KORA,
NAS, RS, and WHI), the replicated CpG sites were add-
itionally adjusted for other potential confounders. These
covariates were selected based on strong associations
with CRP in observational research [15]. In addition to
the variables of the primary model, the sensitivity model
included waist circumference, total/high-density lipopro-
tein (HDL)-cholesterol ratio, prevalent diabetes (defined
as fasting glucose ≥7.0 mmol/L, non-fasting glucose
≥11.1 mmol/L, or the use of diabetes medication), hyper-
tension treatment (use of diuretics, anti-adrenergic
agents, β-blockers, calcium channel blockers, and RAAS
inhibitors), lipid treatment (use of statins, ezetimibe, and
colestyramine), hormone replacement therapy, and
prevalent CHD. Since the population for analysis in the
second model was expected to be slightly smaller com-
pared to the primary model due to missing data for
certain covariates, we repeated the primary model to
include only individuals present in the second model.

To investigate the association between the replicated
CpG sites and serum CRP levels in CD4+ cells, we
tested the association in the Genetics of Lipid Lowering
Drugs and Diet Network (GOLDN) study which quanti-
fied DNA methylation in CD4+ cells. Associations with
a consistent effect direction and P < 0.05 were consid-
ered significant.

Annotation of CpG sites
We used the genome coordinates provided by Illumina
(GRCh37/hg19) to identify independent loci. A distance
criterion of 500 kb on either side of each epigenome-
wide significant signal was used to define independent
loci. In addition to the gene annotation provided by Illu-
mina based on RefSeq database, the UCSC database was
explored to further annotate the CpG sites to potential
genes (nearest gene).

Methylation and genetic score
To calculate the variance explained by the replicated
CpGs, we first selected independent CpGs based on
pairwise Pearson correlation R2. To this end, we first
ranked the significant CpGs by discovery P value in as-
cending order. We then iteratively excluded CpGs corre-
lated with the top CpG site (r2 > 0.1) until we reached a
list of independent CpGs (n = 8). The eight CpGs were
used to construct a methylation score weighted by the
effect estimates from regression in the FHS with lnCRP
as the dependent variable and residuals of the DNA
methylation (after regressing out age, sex, batch effect,
cell counts, smoking, and BMI) as the independent vari-
able. Using a linear regression model, we calculated the
CRP variance explained by the methylation score (mul-
tiple R2, adjusting for age and sex) in ARIC, KORA,
NAS, and RS. Furthermore, an additive effect-size
weighted genetic score for CRP was constructed in RS
to include 18 SNPs identified in the largest GWAS of
CRP (genotyping information RS in Additional file 13:
Supplemental methods) [6]. We calculated weighted
dosages by multiplying the dosage of each risk allele (0,
1, or 2) with the published effect estimate. We calculated
the CRP variance explained by the genetic score and
both the methylation and genetic score combined [6].
Additionally, the interaction between the methylation
and genetic score on CRP was studied using a multi-
plicative interaction term. Finally, we assessed the asso-
ciation between the genetic and methylation scores.

Association with cardiometabolic phenotypes
The association between the significant CpGs and BMI,
total cholesterol, HDL-cholesterol, triglycerides, fasting
glucose, fasting insulin, prevalent diabetes, prevalent
CHD, and incident CHD was explored in CHS, FHS,
InCHIANTI, KORA, NAS, RS, and WHI. The analyses
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on fasting glucose and fasting insulin only included non-
diabetic individuals. Diabetes was defined as fasting
glucose ≥7.0 mmol/L, non-fasting glucose ≥11.1 mmol/L
or the use of glucose-lowering medication. The lipid
traits and fasting glucose were analyzed in mmol/L,
whilst fasting insulin was analyzed in pmol/L. Fasting
insulin and triglycerides were natural log-transformed.
CHD (available in ARIC, CHS, EPICOR, FHS, KORA,
NAS, RS, and WHI) was defined as fatal or non-fatal
myocardial infarction, coronary revascularization, and
unstable angina. The statistical models for the cross-
phenotype analyses were similar to the basic CRP model
(including age, sex, white blood cell counts, technical
covariates, and smoking) with DNA methylation as the
dependent variable. The associations were also adjusted
for BMI, except the association with BMI itself. We con-
ducted fixed effect meta-analyses using the inverse-
variance method for total cholesterol, HDL-cholesterol,
fasting glucose, fasting insulin, and prevalent diabetes.
For incident CHD, associations were analyzed using
(penalized) Cox regression models. Results of the cross-
phenotype associations with BMI and triglycerides were
meta-analyzed combining P values, taking into account
the study sample size and direction of effect. Both
methods are implemented in METAL. We used a
Bonferroni corrected P value of 0.05 divided by the
number of significant CpGs multiplied by nine pheno-
types as a threshold of significant cross-phenotype
association.

Gene expression analyses
To assess the relations of replicated CpGs with gene ex-
pression, we examined the association between repli-
cated CpGs and whole blood gene expression of cis-
genes (250 kb upstream and downstream of the CpG).
The methylation-expression analyses were conducted in
3699 individuals from the FHS, KORA, and RS with
both DNA methylation and gene expression available
from the same blood samples. In RS and KORA, we first
created residuals for both DNA methylation and mes-
senger RNA (mRNA) expression after regressing out
age, sex, blood cell counts (fixed effect), and technical
covariates (random effect). We then examined the asso-
ciation between the residuals of DNA methylation (inde-
pendent variable) and mRNA expression (dependent
variable) using a linear regression model. In FHS, we re-
moved 25 surrogate variables (SVs) [26] from the gene
expression, along with sex, age, and imputed blood cell
fractions as fixed effects, and technical covariates, such
as batch effects and lab effects as random effects. We
also removed 25 separately computed SVs from the
methylation data, along with sex, age, and imputed
blood cell fractions as fixed effects, and technical covari-
ates, such as batch effects and lab effects as random

effects. We then associated the two data using a simple
linear model. Expression probes were aligned to genes
and unique methylation-gene expression results from
FHS (n = 2262), KORA (n = 707), and RS (n = 730) were
meta-analyzed using the sample size weighted method
implemented in METAL, based on P values and direc-
tion of the effects. To reduce the type 1 error, results for
the methylation-expression associations were adjusted
for multiple testing using the Bonferroni correction
(0.05/590 tests: P < 8.47 × 10−5). Furthermore, for the sig-
nificant methylation-expression associations, we tested
the association between the gene expression and serum
CRP levels. We examined the association between gene
expression (dependent variable) and CRP levels (inde-
pendent variable) in a linear model adjusted for age, sex,
blood cell counts, technical covariates (plate ID and
RNA quality score), tobacco smoking, and BMI.
Results from GTP (n = 114), FHS (n = 5328),
InCHIANTI (n = 590), KORA (n = 724), and RS (n =
870) were meta-analyzed using the sample size
weighted method implemented in METAL (P < 0.05
was considered significant) [24]. Information on gene
expression quantification in the specific studies can
be found in Additional file 13: Supplemental methods.

Genetic correlates of DNA methylation
We studied genetic variants in the proximity (±250 kb)
of the inflammation-related CpGs for a methylation
quantitative trait effect on the percentage of methylation
of the CpG site (cis-mQTL). The discovery analyses were
conducted in the RS in which 730 participants were
available with both genetic and epigenetic data. Geno-
typing information for the RS is described in Additional
file 13: Supplemental methods. We used the expression
quantitative trait loci (eQTL) mapping pipeline to study
associations between genetic variants in a 500 kb win-
dow around the CpG site and the percentage of methy-
lation at this CpG site [27]. This pipeline has been
applied previously to study eQTL. Instead of analyzing
gene expression, we modeled the correlation between
genetic variants and DNA methylation and adjusted for
20 principal components derived from the DNA methy-
lation data to account for potential unrelated variation
in the DNA methylation caused by environmental or
technical effects (batch effects). The threshold of signifi-
cance for cis-mQTLs was defined according to the pipe-
line specifications by a false discovery rate of 5%. When
multiple cis-mQTLS were identified for the same CpG
site, only the SNP with the lowest P value was reported.
Next, significant cis-mQTLs were replicated in FHS. The
cis-mQTL analysis in FHS was performed on 2408 indi-
viduals having both genotype and methylation data.
Genotyping information for FHS is described in
Additional file 13: Supplemental methods. We removed
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50 principal components from the epigenomics data,
along with sex, age, and imputed blood cell fractions as
fixed effects, and technical covariates, such as batch
effects and lab effects as random effects. We then as-
sociate the epigenomic residual data with the geno-
typic data accounting for ten principal components
computed using the Eigenstrat software using fixed
effect linear model. We collected effect value, T statis-
tics, and P value. We used a Bonferroni corrected P
value of 0.05/20 = 2.5 × 10−3 (based on 20 findings in
the discovery) for significant replication in FHS. Sub-
sequently, replicated cis-mQTLs were tested for asso-
ciation with serum CRP in the largest published CRP
GWAS (n = 66,185) to strengthen the causal inference
from our findings [6].

GWAS catalog, pathway analysis, and tissue enrichment
We used the National Human Genome Research Insti-
tute (NHGRI) GWAS catalog to query whether genes
annotated to replicated CpGs were enriched for genes
identified in published GWAS [28]. Altogether, 7600
SNPs, annotated to 4498 genes, associated with 988 phe-
notypes at GWAS P value ≤ 5 × 10−8, were retrieved on
25 August 2016 from the NHGRI GWAS catalog.
Methylation CpGs were matched by gene symbols with
the reported genes in the GWAS catalog. CpGs not an-
notated to a gene were discarded. Enrichment statistics
were performed using one-sided Fisher’s test. Next, en-
richment of canonical pathways was explored using In-
genuity® Pathway Analysis software tool (IPA®, QIAGEN
Redwood City, http://www.qiagen.com/ingenuity). Repli-
cated CpGs which mapped to a UCSC Refseq gene were
included in pathway analyses. Pathway analyses were
performed using the IPA software tool (IPA build ver-
sion 338830 M, content version: 23814503, release date
2016-10-04, analysis date 2015-08-03; http://www.inge-
nuity.com/). Gene enrichment in canonical pathways
was assessed in the core analysis module using Fisher’s
exact test right-tailed. Furthermore, we used experimen-
tally derived Functional element Overlap analysis of Re-
Gions from EWAS (eFORGE) to identify tissue specific
or cell-type specific signals [29]. eFORGE analyzes a set
of differentially methylated CpGs for enrichment of
overlap with DNase 1 hypersensitivity sites in differ-
ent cell types of the ENCODE project. All 58 repli-
cated CpGs were entered as the input of the eFORGE
analysis. The set of 58 CpGs were tested for enrich-
ment for overlap with putative functional elements
compared to matched background CpGs. The func-
tional elements considered are DNase I hotpsots
fromthe ENCODE project. The matched background
is a set of the same number of CpGs as the test set,
matched for gene relationship and CpG island rela-
tionship annotation. Thousand matched background

sets were applied. The enrichment analysis was per-
formed for different tissues, since functional elements
may differ across tissues. Enrichment outside the
99.9th percentile (−log10 binomial p value: ≥3.38) was
considered statistically significant (red).
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